Dialkylaminophosphorus metal carbonyls. 12. Insertion of phosphorus, sulfur, and selenium into the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit and a novel product from the reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with PhBCl_{2}

Y.W. Li, M.G. Newton, R.B. King *
Department of Chemistry, University of Georgia, Athens, GA 30602, USA

Received 25 May 1994

Abstract

Reactions of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{RPCl}_{2}\left(\mathrm{R}={ }^{t} \mathrm{Bu}\right.$ and Ph but not $\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)$ in boiling toluene give the corresponding yellow ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{RP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ derivatives. Similar reactions of (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{PX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$) give the corresponding $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PX}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ derivatives. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with elemental sulfur in boiling toluene gives yellow ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$. Reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{E}_{2} \mathrm{Cl}_{2}\left(\mathrm{E}=\mathrm{S} \text {, Se) give }\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2}\right)_{2} \mathrm{E}_{2} \mathrm{Fe}_{2}(\mathrm{CO})\right)_{6}$. Treatment of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with boiling CCl_{4} results in chlorination to give light yellow $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with PhBCl_{2} in boiling toluene gives yellow $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{CIP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. An X-ray diffraction study reveals that the structure of $\left[\left({ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ is analogous to that of products previously obtained from reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with aldehydes or ketones in which expulsion of the phosphorus-bridging carbonyl is followed by addition of the phosphorus atoms across the aldehyde or ketone carbonyl, leading to a central $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{OC}$ unit.

Keywords: Iron; Carbonyl; Phosphorus; Sulfur; Selenium; Boron

1. Introduction

Phosphorus-bridging carbonyl expulsion from (${ }^{(}{ }^{~} \mathrm{Pr}_{2^{-}}$ $\mathrm{NP})_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}\left(\mathbf{I}\right.$ in Fig. 1) at $\sim 110^{\circ}$ results in a reactive ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit, possibly the diradical II (Fig. 1), which was shown in previous papers of this series [1,2] to add across the carbon-oxygen double bonds of aldehydes, ketones, or anhydrides, the car-bon-nitrogen triple bonds of nitriles, and the carboncarbon double bond of acrylonitrile. In addition, alcohols (ROH: $\mathrm{R}=\mathrm{Me}, \mathrm{Et}$) were shown [3] to add across the ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit to form the corresponding ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NPOR}\right)\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NPH}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ derivatives. This paper reports a new type of reaction of the (${ }^{(} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{Fe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ unit generated from $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$, namely the insertion of a third phosphorus atom, one

[^0]or two sulfur atoms, or two selenium atoms between the two phosphorus atoms of the (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit to give ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PR}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with a $\mathrm{P}-\mathrm{P}-\mathrm{P}$ chain (III in Fig. 1), ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$ with a $\mathrm{P}-\mathrm{S}-\mathrm{P}$ chain (IV in Fig. 1), or ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{E}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{E}=$ S, Se) with a $\mathrm{P}-\mathrm{E}-\mathrm{E}-\mathrm{P}$ chain (\mathbf{V} in Fig. 1), respectively. This paper also reports the corresponding reaction of PhBCl_{2} with ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ (I in Fig. 1), which follows a totally different course, giving $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{VI})$ closely related to the $\left.\left[{ }^{(}{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (VII: $\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}$) obtained by heating ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with benzophenone [2].

VI

Fig. 1. General scheme for the reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{RPCl}_{2}\left(\mathrm{R}={ }^{t} \mathrm{Bu}, \mathrm{Ph}, \mathrm{Cl}, \mathrm{Br}\right), \mathrm{S}_{8}$, and $\mathrm{E}_{2} \mathrm{Cl}_{2}(\mathrm{E}=\mathrm{S}$, Se$)$.

2. Experimental section

The general experimental conditions are the same as described the previous paper in this series [1]. IR $\nu(\mathrm{CO})$ frequencies and ${ }^{31} \mathrm{P}$ NMR spectra of the products are given in Table 1, proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra are given in Table 2, and proton NMR spectra are given in Table 3.

2.1. Preparation of $\left({ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left({ }^{(}{ }^{\mathrm{BuP}}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

A solution of $4.5 \mathrm{~g}(7.9 \mathrm{mmol})$ of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ and $1.2 \mathrm{~g}(7.5 \mathrm{mmol})$ of ${ }^{t} \mathrm{BuPCl}_{2}[4]$ in 100 ml of toluene was boiled under reflux for 4 h . After removal of solvent in vacuum from the filtered solution, the residue was chromatographed on a silica gel column, with 1:1 hexane/dichloromethane being used to elute

Table 1
IR $\nu(\mathrm{CO})$ frequency and phosphorus- 31 NMR spectra of insertion products into the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ unit and related compounds

Compound ${ }^{\text {a }}$	IR $\nu(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)^{\text {a }}$	Phosphorus-31 NMR (δ) ${ }^{\text {b }}$		
		Middle P	End P	$J(\mathrm{P}-\mathrm{P}) \mathrm{Hz}$
${ }^{(} \mathrm{BuP}_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{\mathrm{c}}$	2050s, 2012s, 1982s, 1971s, 1960s, 1932w	249.0t	99.9 d	176
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{\text {d }}$	2048s, 2008s, 1986s, 1958s, 1947m	292.2t	170.3 d	264
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PCl}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{\text {d }}$	2062m, 2023s, 1996s, 1982s, 1967s	318.7t	147.8 d	254
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PBr}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{\mathrm{d}}$	2059m, 2020s, 1993s, 1984m, 1967s	302.9t	142.2d	257
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left({ }^{t} \mathrm{BuP}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	2044m, 2001s, 1977s, 1957s, 1940s	334.5t	127.1d	212
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PhP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$2047 \mathrm{~m}, 2007 \mathrm{~s}, 1981 \mathrm{~s}, 1961 \mathrm{~s}, 1945 \mathrm{~s}$	285.6t	131.5d	201
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$	2052m, 2011s, 1988s, $1970 \mathrm{~s}, 1950 \mathrm{~m}$	-	143.0	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	2056m, 2018s, 1990s, 1978s, 1956m	-	278.3 s	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Se}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	2056m, 2020s, 1990s, 1980s, 1961m	-	274.3 s	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	2066m, 2032s, 1990s	278.2d	268.4d	123
$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}{ }^{\text {e }}$	2052m, 2013s, 1987s, 1974m, 1957m	288.6d	259.1(d)	128
$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$2063 \mathrm{~m}, 2024 \mathrm{~s}, 2000 \mathrm{~s}, 1983 \mathrm{~s}, 1968 \mathrm{~s}$	289.5 d	279.0d	116

[^1]Table 2
Proton-decoupled carbon-13 NMR spectra ${ }^{\text {a }}$ of insertion products into the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit and related compounds

Compound	Isopropyl groups		Terminal CO	Other
	CH	CH_{3}		
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left({ }^{(} \mathrm{BuP}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	53.8	22.6	212.8	tert-butyl C: $43.5 \mathrm{~d}(6)$; Me: 29.8
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PhP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	53.7	22.5	212.2	phenyl: $130.8,129.5 .128 .1$
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$	54.8	22.2	209.9	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	56.3	24.2	213.1	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Se}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	57.0	24.5	212.6	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	58.1	23.5	210.7	-
$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	54.8	23.6	211.0	C-O bonded to P_{2} : 140.6; phenyl: 127.9-127.1

${ }^{a}$ These spectra were taken in CDCl_{3} solutions using $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard; $\mathrm{d}=$ doublet; other resonances appear as singlets.
the black-yellow band. Evaporation of the filtered eluates gave 0.86 g (18% yield) of yellow, air-sensitive $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left({ }^{t} \mathrm{BuP}^{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ (III: $\mathrm{R}={ }^{t} \mathrm{Bu}$ in Fig. 1), m.p. $166-167^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{3}$: C, 41.9; H, 5.9; N, 4.4: Found: C, 41.9; N, 5.9; N, 4.4\%.

2.2. Preparation of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PhP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

A solution of $1.85 \mathrm{~g}(3.25 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $0.60 \mathrm{~g}(3.25 \mathrm{mmol})$ of PhPCl_{2} in 100 ml of toluene was boiled under reflux for 7 h . Examination of the reaction mixture by ${ }^{31} \mathrm{P}$ NMR at this point revealed a minor singlet at $\delta 170.3$ assigned to ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ (lit. [5] $\delta 167.7$). Solvent was removed from the filtrate in vacuo and the residue was chromatographed on silica gel with 1:1 hexane/dichloromethane as eluent. Evaporation of the eluate from the red-yellow band gave 1.13 g (54% yield) of yellow, air-sensitive $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left(\mathrm{PhP}^{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}\right.$ (III in Fig. 1: $\mathrm{R}=\mathrm{Ph}$), m.p. $111-113^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{3}: \mathrm{C}, 44.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 4.3$. Found: C, 44.6; H, 5.1; N, 4.1\%.

2.3. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with PCl_{3}

A solution of $1.0 \mathrm{~g}(1.75 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}-$ $(\mathrm{CO})_{6}$ and $0.16 \mathrm{ml}(1.82 \mathrm{mmol})$ of 99% phosphorus trichloride in 120 ml of toluene was boiled under reflux
for 16 h . Removal of solvent gave a residue shown by its ${ }^{31} \mathrm{P}$ NMR spectrum in CDCl_{3} to be the previously reported [6] $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left(\mathrm{PCl}_{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (III in Fig. 1: $\mathrm{R}=\mathrm{Cl}$) as well as an additional species showing an AX_{2} pattern at $\delta 149.6$ and 319.1 with $|J|=255 \mathrm{~Hz}$.

2.4. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with PBr_{3}

A solution of $1.0 \mathrm{~g}(1.75 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}-$ $(\mathrm{CO})_{6}$ and $0.18 \mathrm{ml}(1.89 \mathrm{mmol})$ of phosphorus tribromide in 150 ml of toluene was boiled under reflux for 8 h. The ${ }^{31} \mathrm{P}$ NMR spectrum of the crude reaction mixture at this point indicated the presence of the known [6] $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PBr}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (III in Fig. 1: $\left.\mathrm{R}=\mathrm{Br}\right)$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPBr}_{2}$ as well as an unknown complex exhibiting a singlet at $\delta-304.52$, which was presented in too limited quantities for isolation.
2.5. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{Cl}_{2} \mathrm{PCH}_{2}-$ $\mathrm{CH}_{2} \mathrm{PCl}_{2}$

A solution of $2.83 \mathrm{~g}(4.96 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $1.0 \mathrm{~g}(4.30 \mathrm{mmol})$ of $\mathrm{Cl}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PCl}_{2}$ in 120 ml of toluene was boiled under reflux for 12 h . The ${ }^{31} \mathrm{P}$ NMR spectrum of the crude product mixture showed only ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ with no evidence for the formation of any iron carbonyl complexes with $\mathrm{P}_{3} \mathrm{Fe}_{2}$ structural units.

Table 3
Proton NMR spectra of insertion products into the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit ${ }^{\text {a }}$

Compound	Isopropyl Groups		Other
	CH	CH_{3}	
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}\left({ }^{i} \mathrm{BuP}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$3.41 \mathrm{sp}(7)$	$1.19 \mathrm{dd}(9.7)$	$\mathrm{Me}: 1.44 \mathrm{~d}(10)$
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PhP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$3.43 \mathrm{sp}(7)$	$1.11 \mathrm{dd}(19.7)$	$\mathrm{Ph}: 7.5-7.9$
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$	$3.68 \mathrm{sp}(7)$	-	
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$4.04 \mathrm{sp}(7)$	$1.19 \mathrm{~d}(7)$	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Se}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$4.09 \mathrm{sp}(6)$	$1.46 \mathrm{~d}(7)$	-
$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	4.01	$1.48 \mathrm{~d}(7)$	-
$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	3.97	$1.43,1.35$	-

[^2]2.6. Reactions of (${ }^{(} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ and with $\mathrm{MeP}(\mathrm{O}) \mathrm{Cl}_{2}$

A solution of $0.50 \mathrm{~g}(0.88 \mathrm{mmol})$ of ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $0.40 \mathrm{~g}(1.98 \mathrm{mmol})$ of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ in 70 ml of toluene was heated for 16 h under reflux in a $135^{\circ} \mathrm{C}$ oil bath. The ${ }^{31} \mathrm{P}$ NMR spectrum of the crude reaction mixture revealed no evidence for the formation of any of the known [7] ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (III in Fig. 1: $\mathrm{X}={ }^{i} \mathrm{Pr}_{2} \mathrm{~N}$).

A similar procedure for the reaction of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2^{-}}$ $\mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{MeP}(\mathrm{O}) \mathrm{Cl}_{2}$ failed to give any evidence by ${ }^{31} \mathrm{P}$ NMR for the formation of any $\mathrm{P}_{3} \mathrm{Fe}_{2}$ complex.

2.7. Preparation of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$

A mixture of $1.40 \mathrm{~g}(2.46 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2^{-}}$ $(\mathrm{CO})_{6}$ and $0.10 \mathrm{~g}(3.13 \mathrm{mmol})$ of elemental sulfur (S_{8}) in 70 ml of toluene was heated under reflux at $100^{\circ} \mathrm{C}$ for 5 h . Solvent was removed in vacuo from the filtered reaction mixture. The residue was extracted with hexane. Concentration and cooling of the filtered hexane extract gave $1.26 \mathrm{~g}\left(89 \% \text { yield) of yellow (}{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (IV in Fig. 1), m.p. 131-132 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}$: C, 37.6; H, 4.9; N, 4.9; S, 5.6. Found: C, 37.7; H, 4.9; N, 4.9; S, 5.6\%.

The reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with commercially available elemental gray selenium was also investigated using a similar procedure. The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture indicated only the presence of unreacted ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$. Increasing the reaction temperature led only to the decomposition of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with no evidence for the formation of any new soluble organophosphorus iron carbonyl complexes.

2.8. Preparation of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

A solution of $2.56 \mathrm{~g}(4.49 \mathrm{mmol})$ of ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $0.5 \mathrm{ml}(6.1 \mathrm{mmol})$ of unredistilled commercial 97% disulfur dichloride $\left(\mathrm{S}_{2} \mathrm{Cl}_{2}\right)$ in 120 ml of hexane was boiled under reflux. The ${ }^{51}$ P NMR spectrum after 2.5 h of heating exhibited only unreacted $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ as well as ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$. The heating was continued for one week. At that point the ${ }^{31} \mathrm{P}$ NMR spectrum indicated consumption of all of the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$. Solvent was removed from the filtered reaction mixture in vacuum and then the ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$ by sublimation at $80^{\circ} \mathrm{C} / 0.02 \mathrm{~mm}$. The residue was chromatographed on silica gel using hexane to elute the broad yellow-brown band. Evaporation of the filtered eluate in vacuum followed by crystallization from a mixture of hexane and dichloromethane gave a mixture of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$ and $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2^{-}}$ $\mathrm{S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. Repeated chromatography and recrystallization by similar procedures ultimately separated 0.32
g (12% yield) of pure yellow ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{~V}$ in Fig. 1: $\mathrm{E}=\mathrm{S}$). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 35.6; H, 4.7; N, 4.6; S, 10.6. Found: C, 35.6; H, 4.6; N, 4.6; S, 10.7%.

2.9. Isolation of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$

A yellow solution containing $3.0 \mathrm{ml}(37.5 \mathrm{mmol})$ of disulfur dichloride (redistilled over $\mathrm{P}_{4} \mathrm{O}_{10}$) and 6.67 g (11.7 mmol) of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}\right.$ in 250 ml of toluene was boiled under reflux for 16 h . Removal of solvent from the filtered reaction mixture followed by sublimation of the residue at $70^{\circ} \mathrm{C} / 0.01 \mathrm{~mm}$ gave 1.63 $\mathrm{g}\left(59 \%\right.$ yield) of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$. Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{14}{ }^{-}$ $\mathrm{NPSCl}_{2}: \mathrm{C}, 30.8 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.0 ; \mathrm{S}, 13.7$. Found: C, 31.4; H, 5.8; N, 5.7; S, 15.7\%.

2.10. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with sulfur dichloride

A solution of $1.0 \mathrm{~g}(1.75 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ and $0.20 \mathrm{~g}(1.91 \mathrm{mmol})$ of sulfur dichloride (redistilled over $\mathrm{P}_{4} \mathrm{O}_{10}$) in 70 ml of toluene was stirred at room temperature for 16 h . The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture at this point exhibited resonances for unchanged ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ as well as a $\delta 51$ resonance assigned to ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$. The reaction mixture was then boiled under reflux for 16 h . The ${ }^{31} \mathrm{P}$ NMR spectrum of the resulting mixture indicated the presence of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2},\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$, and ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ by resonances at $\delta 51,143$, and 278 , respectively, and the complete consumption of ($\left.{ }^{2} \mathrm{Pr}_{2} \mathrm{NP}^{2}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$. Two minor components exhibiting ${ }^{31} \mathrm{P}$ NMR singlets at $\delta 70$ and $\delta 208$ were also observed; these products were present in only small quantities and were not isolated.

2.11. Preparation of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Se}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

A solution of $3.53 \mathrm{~g}(6.18 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and $1.43 \mathrm{~g}(6.18 \mathrm{mmol})$ of 99% commercial diselenium dichloride $\left(\mathrm{Se}_{2} \mathrm{Cl}_{2}\right)$ in 70 ml of toluene was boiled under reflux for 10 h . The ${ }^{31} \mathrm{P}$ NMR spectrum of the crude reaction mixture exhibited two singlets at $\delta 105$ and $\delta 274$. A product isolation procedure similar to that given above for $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ including repeated chromatography on silica gel and recrystallization gave 0.22 g (5% yield) of brown (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{Se}_{2}-$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{~V}\right.$ in Fig. 1: $\mathrm{E}=\mathrm{Se}$), m.p. 137-138 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Se}_{2}$: C, 30.9; H, 4.0; $\mathrm{N}, 4.0$. Found: C, 31.0; H, 4.1; N, 4.1\%.

2.12. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with carbon tetrachloride

A solution of $1.1 \mathrm{~g}(1.93 \mathrm{mmol})$ of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ in 150 ml of carbon tetrachloride was boiled
under reflux for 48 h . The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture indicated the presence of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ as well as $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ as the principal product. Solvent was removed from the filtered reaction mixture in vacuum. The residue was extracted with hexane. Concentrating and cooling the filtered hexane solution gave 0.86 g (45% yield) of light yellow ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{~N}\right)_{2} \mathrm{P}_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, m.p. $134-135^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2}: \mathrm{C}, 35.3 ; \mathrm{H}, 4.6 ; \mathrm{Cl}, 11.6$. Found: C, $35.5 ; \mathrm{H}, 4.6 ; \mathrm{Cl}, 11.6 \%$.

2.13. Reaction of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with phenyldichloroborane

A solution of $3.0 \mathrm{~g}(5.26 \mathrm{mmol})$ of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ and $0.70 \mathrm{ml}(5.26 \mathrm{mmol})$ of commercial 95% phenyldichloroborane $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{BCl}_{2}\right)$ in 130 ml of toluene was heated under reflux to $105^{\circ} \mathrm{C}$ in an oil bath for 50 h. The ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture exhibited a pair of doublets at $\delta 290.5,280.3(|J|=115$ Hz) assigned to $\left.\left[{ }^{i}{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathbf{V I})$, a second pair of doublets at $\delta 266$, and $143(|J|=122$ Hz), and a singlet at $\delta 170.3$ assigned to ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$. Solvent was removed from the reaction mixture under reduced pressure and the residue was extracted with a mixture of hexane and dichloromethane. The filtered and concentrated extract was chromatographed on a silica gel column. The resulting yellow band was eluted with hexane. Concentration and cooling the filtered eluate gave 0.20 g (12% yield) of yellow [$\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right.$)(CIP)$\left.\mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{VI})$, m.p. $175-176^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClFe}_{2} \mathrm{NO}_{7} \mathrm{P}_{2}: \mathrm{C}, 45.5 ; \mathrm{H}, 3.7 ; \mathrm{Cl}, 5.4 ; \mathrm{N}, 2.1$. Found: C, $46.2 ; \mathrm{H}, 3.9 ; \mathrm{Cl}, 5.5 ; \mathrm{N}, 2.1 \%$.

2.14. Structure determination of $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) O C\right.$ $\mathrm{Ph}_{2} / \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

An orange needle crystal of $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{ClC}_{24} \mathrm{O}_{6} \mathrm{NH}_{24}=$ $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ from hexane was fixed in a random orientation on a glass fiber and mounted on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite crystal monochromator. Cell dimensions were determined by least squares refinement of the angular positions of 25 carefully centered independent reflections for each sample in the $10-40^{\circ} 2 \theta$ range during the normal alignment procedure. Intensity data using $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$) were collected at a temperature of $23 \pm 1^{\circ} \mathrm{C}$ over a θ range of $2-75^{\circ}$ using the $\omega-2 \theta$ technique. Of the 5899 reflections which were collected, 5691 were unique ($R_{i n t}=$ 0.313). The intensities of three representative reflections were measured after every 120 min of X-ray exposure time. No decay correction was applied. The linear absorption coefficient, μ, for $\mathrm{Cu} \mathrm{K} \alpha$ radiation is $105.6 \mathrm{~cm}^{-1}$. An empirical absorption correction based
on azimuthal scans of several reflections was applied which resulted in transmission factors ranging from 0.35 to 1.00 . The data were corrected for Lorentz and polarization effects. A correction for secondary extinction was applied (coefficient $=7.45028 \times 10^{-8}$).

The structure was solved by direct methods [8] and expanded using Fourier techniques [9]. All non-hydrogen atoms were refined anisotropically except C 5 which consistently refined to non-positive definite anisotropic factors. C5 was refined isotropically. Hydrogen atoms were included by calculation of estimated coordinates but not refined. The final cycle of full-matrix least squares refinement was based on 2770 observed reflections ($I>3 \sigma(I)$) and 339 variable parameters and converged (largest parameter shift was 0.06 times its esd) with unweighted and weighted agreement factors of $R=0.110$ and $R_{w}=0.129$. These R values are higher than those from typical structure determinations probably because of the rather large empirical absorption correction coupled with the fact that only 49% of the possible data was observed. Neutral atom scattering factors were taken from Cromer and Waber [10]. Anomalous dispersion effects were included in $F_{\text {call }}$ [11]; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley [12]. The values for the mass attenuation coefficients are those of Creagh and Hubbel [13]. All calculations were performed using the teXsan [14] crystallographic software package of Molecular Structure Corporation.

The crystal data for [$\left.\left[{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (VI) are summarized in Table 4 and its structure is depicted in Fig. 2. Selected bond distances and angles are given in Tables 5 and 6, respectively, and atom coordinates in Table 7. Complete lists of bond lengths and angles and a table of anisotropic displacement

Table 4
Crystal data for $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$

molecular weight	631.55
crystal dimensions (mm)	$0.20 \times 0.30 \times 0.45 \mathrm{~mm}$
crystal system	monoclinic
space group	$P 2_{1} / a$ (non-standard No. 14)
$a(\AA)$	$15.467(1)$
$b(\AA)$	$10.589(1)$
$c(\AA)$	$17.263(2)$
$\beta(\mathrm{deg})$	$96.124(9)$
$V\left(\AA^{3}\right)$	$2811.3(4)$
$F(000)$	1288
$\mu(\mathrm{CuK})\left(\mathrm{Km}^{-1}\right)$	105.57
$D_{\text {calcd }}(\mathrm{g} \mathrm{cm}$	
Z	1.492
no of total reflections	4
no of observed reflections	5691
octants collected	2770
R	$+h,+k, \pm 1$
R_{w}	0.110

Fig. 2. ORTEP diagram for the structure of [($\left.\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right]$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathbf{V I})$.
parameters have been deposited at the Cambridge Crystallographic Data Center.

3. Results

3.1. Atom insertion reactions into the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit generated by carbonyl extrusion from $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$

Reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}(\mathrm{I})$ with RPCl_{2} derivatives ($\mathrm{R}={ }^{t} \mathrm{Bu}$ and Ph) in boiling toluene resulted in extrusion of the phosphorus-bridging carbonyl group followed by insertion of an RP unit to give the corresponding ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{RP}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ derivatives (III) as yellow air-sensitive solids. These new compounds were

Table 5
Selected bond distances (\AA) for $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{CIP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{VI})$

$\mathrm{Fe} 1-\mathrm{Fe} 2$	$2.616(3)$	$\mathrm{Fe} 1-\mathrm{P} 1$	$2.193(5)$
$\mathrm{Fe} 1-\mathrm{P} 2$	$2.190(5)$	$\mathrm{Fe} 1-\mathrm{C} 1$	$1.83(2)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$1.80(2)$	$\mathrm{Fe} 1-\mathrm{C} 3$	$1.79(2)$
$\mathrm{Fe} 2-\mathrm{P} 1$	$2.176(4)$	$\mathrm{Fe} 2-\mathrm{P} 2$	$2.201(5)$
$\mathrm{Fe} 2-\mathrm{C} 4$	$1.80(2)$	$\mathrm{Fe} 2-\mathrm{C} 5$	$1.72(2)$
$\mathrm{Fe} 2-\mathrm{C} 6$	$1.82(2)$	$\mathrm{Cl} 1-\mathrm{P} 1$	$2.029(6)$
$\mathrm{P} 1 \cdots \mathrm{P} 2$	$2.542(6)$	$\mathrm{P} 1-\mathrm{C} 13$	$1.91(1)$
$\mathrm{P} 2-\mathrm{O} 7$	$1.68(1)$	$\mathrm{P} 2-\mathrm{N} 1$	$1.66(1)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.10(2)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.13(2)$
$\mathrm{O} 3-\mathrm{C} 3$	$1.14(2)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.12(2)$
$\mathrm{O} 5-\mathrm{C} 5$	$1.18(2)$	$\mathrm{O} 6-\mathrm{C} 6$	$1.12(2)$
$\mathrm{O} 7-\mathrm{C} 13$	$1.45(2)$		

Table 6
Selected bond angles (${ }^{\circ}$) for $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{VI})$

$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{P} 1$	$52.9(1)$	$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{P} 2$	$53.6(1)$
$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{C} 1$	$93.0(7)$	$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{C} 2$	$151.8(6)$
$\mathrm{Fe} 2-\mathrm{Fe} 1-\mathrm{C} 3$	$101.3(5)$	$\mathrm{P} 1-\mathrm{Fe} 1-\mathrm{P} 2$	$70.9(2)$
$\mathrm{P} 1-\mathrm{Fe} 1-\mathrm{C} 1$	$91.8(8)$	$\mathrm{P} 1-\mathrm{Fe} 1-\mathrm{C} 2$	$104.5(7)$
$\mathrm{P} 1-\mathrm{Fe} 1-\mathrm{C} 3$	$154.2(6)$	$\mathrm{P} 2-\mathrm{Fe} 1-\mathrm{C} 1$	$146.6(7)$
$\mathrm{P} 2-\mathrm{Fe} 1-\mathrm{C} 2$	$106.3(7)$	$\mathrm{P} 2-\mathrm{Fe} 1-\mathrm{C} 3$	$93.2(6)$
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 2$	$105.6(9)$	$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{C} 3$	$91.2(10)$
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 3$	$99.3(9)$	$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{P} 1$	$53.5(1)$
$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{P} 2$	$53.2(1)$	$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{C} 4$	$105.8(7)$
$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{C} 5$	$150.3(6)$	$\mathrm{Fe} 1-\mathrm{Fe} 2-\mathrm{C} 6$	$94.1(5)$
$\mathrm{P} 1-\mathrm{Fe} 2-\mathrm{P} 2$	$71.0(2)$	$\mathrm{P} 1-\mathrm{Fe} 2-\mathrm{C} 4$	$93.4(6)$
$\mathrm{P} 1-\mathrm{Fe} 2-\mathrm{C} 5$	$105.9(6)$	$\mathrm{P} 1-\mathrm{Fe} 2-\mathrm{C} 6$	$147.6(5)$
$\mathrm{P} 2-\mathrm{Fe} 2-\mathrm{C} 4$	$158.6(6)$	$\mathrm{P} 2-\mathrm{Fe} 2-\mathrm{C} 5$	$102.6(6)$
$\mathrm{P} 2-\mathrm{Fe} 2-\mathrm{C} 6$	$90.9(5)$	$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{C} 5$	$95.6(9)$
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{C} 6$	$95.5(8)$	$\mathrm{C} 5-\mathrm{Fe} 2-\mathrm{C} 6$	$104.2(8)$
$\mathrm{Fe} 1-\mathrm{P} 1-\mathrm{Fe} 2$	$73.5(2)$	$\mathrm{Fe} 1-\mathrm{P} 1-\mathrm{Cl} 1$	$122.3(3)$
$\mathrm{Fe} 1-\mathrm{P} 1-\mathrm{P} 2$	$54.5(1)$	$\mathrm{Fe} 1-\mathrm{P} 1-\mathrm{C} 13$	$112.2(5)$
$\mathrm{Fe} 2-\mathrm{P} 1-\mathrm{Cl} 1$	$127.5(2)$	$\mathrm{Fe} 2-\mathrm{P} 1-\mathrm{P} 2$	$55.0(1)$
$\mathrm{Fe} 2-\mathrm{P} 1-\mathrm{C} 13$	$108.2(4)$	$\mathrm{Cl} 1-\mathrm{P} 1-\mathrm{P} 2$	$176.0(3)$
$\mathrm{Cl} 1-\mathrm{P} 1-\mathrm{C} 13$	$109.0(5)$	$\mathrm{P} 2-\mathrm{P} 1-\mathrm{C} 13$	$71.5(5)$
$\mathrm{Fe} 1-\mathrm{P} 2-\mathrm{Fe} 2$	$73.1(2)$	$\mathrm{Fe} 1-\mathrm{P} 2 \mathrm{P} 1$	$54.6(1)$
$\mathrm{Fe} 1-\mathrm{P} 2-\mathrm{O} 7$	$110.4(4)$	$\mathrm{Fe} 1-\mathrm{P} 2-\mathrm{N} 1$	$130.1(6)$
$\mathrm{Fe} 2-\mathrm{P} 2-\mathrm{P} 1$	$54.0(1)$	$\mathrm{Fe} 2-\mathrm{P} 2-\mathrm{O} 7$	$110.4(4)$
$\mathrm{Fe} 2-\mathrm{P} 2-\mathrm{N} 1$	$127.3(5)$	$\mathrm{P} 1-\mathrm{P} 2-\mathrm{O} 7$	$72.3(4)$
$\mathrm{P} 1-\mathrm{P} 2-\mathrm{N} 1$	$174.9(6)$	$\mathrm{O} 7-\mathrm{P} 2-\mathrm{N} 1$	$103.6(6)$
$\mathrm{P} 2-\mathrm{O} 7-\mathrm{Cl} 3$	$115.9(8)$	$\mathrm{P} 2-\mathrm{N} 1-\mathrm{C} 7$	$122(1)$
$\mathrm{P} 2-\mathrm{N} 1-\mathrm{C} 10$	$118(1)$	$\mathrm{Fe} 1-\mathrm{C} 1-\mathrm{O} 1$	$173(2)$
$\mathrm{Fe} 2-\mathrm{C} 2-\mathrm{O} 2$	$177(1)$	$\mathrm{Fe} 1-\mathrm{C} 3-\mathrm{O} 3$	$177(1)$
$\mathrm{Fe} 4-\mathrm{C} 4-\mathrm{O} 4$	$175(2)$	$\mathrm{Fe} 5-\mathrm{C} 5-\mathrm{O} 5$	$172(1)$
$\mathrm{Fe} 6-\mathrm{C} 6-\mathrm{O} 6$	$179(1)$	$\mathrm{P} 1-\mathrm{C} 13-\mathrm{O} 7$	$99.7(9)$
$\mathrm{P} 1-\mathrm{C} 13-\mathrm{C} 14$	$113.0(10)$	$\mathrm{P} 1-\mathrm{C} 13-\mathrm{C} 20$	$113(1)$

characterized by elemental analyses and the similarity of their infrared $\nu(\mathrm{CO})$ and ${ }^{31} \mathrm{P}$ NMR spectra to the known [3] $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (III: $\mathrm{R}={ }^{i} \mathrm{Pr}_{2} \mathrm{~N}$) prepared by a different method, namely the reaction of $\mathrm{Na}_{2} \mathrm{Fe}(\mathrm{CO})_{4}$ with ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ in tetrahydrofuran solution. Interestingly enough, the known $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}-$ $(\mathrm{CO})_{6}$ could not be prepared by the analogous reaction of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ with $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ in boiling toluene possibly owing to the greater steric hindrance of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPCl}_{2}$ relative to PhPCl_{2} or even to ${ }^{t} \mathrm{BuPCl}_{2}$. Reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ (I) with the phosphorus (III) halides, $\mathrm{PX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ in boiling toluene proceeded analogously to the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6} /$ $\mathrm{RPCl}_{2}\left(\mathrm{R}={ }^{\prime} \mathrm{Bu}\right.$ and Ph$)$ reactions to give the corresponding ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{PX}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ derivatives (III: $\mathrm{R}=$ Cl, Br in Fig. 1), which were identified by comparison of their ${ }^{31} \mathrm{P}$ NMR spectra with those of authentic materials prepared by reactions of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{3} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ with the corresponding hydrogen halides, $\mathrm{HX}(\mathrm{X}=$ $\mathrm{Cl}, \mathrm{Br})$ [6]. Similar reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{Cl}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PCl}_{2}$ and with $\mathrm{MeP}(\mathrm{O}) \mathrm{Cl}_{2}$ failed to give any ${ }^{31} \mathrm{P}$ NMR evidence for $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2}(\mathrm{RP}) \mathrm{Fe}_{2}-$ $(\mathrm{CO})_{6}$ products.

Some related chalcogen insertion reactions were also investigated. Heating ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with

Table 7
Atomic coordinates and $B_{i s o} / B_{e q}$

atom	x	y	z	$B_{e q}$
$\mathrm{Fe}(1)$	0.2726(1)	$0.1155(3)$	0.1819(1)	3.63(6)
$\mathrm{Fe}(2)$	0.1028 (1)	$0.1181(3)$	0.1573(1)	$3.19(6)$
$\mathrm{Cl}(1)$	0.1876 (3)	0.3563(4)	0.3092(3)	$5.0(1)$
$\mathrm{P}(1)$	$0.1814(3)$	0.1804(4)	0.2624(2)	$3.01(9)$
$\mathrm{P}(2)$	$0.1849(2)$	-0.0397(4)	0.2041(2)	2.77 (9)
O(1)	0.281(1)	0.373 (2)	$0.122(1)$	8.7(5)
O(2)	0.4370 (8)	$0.070(2)$	$0.2791(9)$	$7.1(4)$
O(3)	$0.3205(10)$	$0.006(2)$	$0.0365(8)$	$7.8(5)$
$\mathrm{O}(4)$	$0.054(1)$	$0.376(1)$	$0.112(1)$	$9.5(6)$
O(5)	$-0.0621(7)$	0.039(1)	$0.2054(7)$	6.1(4)
$O(6)$	$0.0979(8)$	$0.017(1)$	-0.0021(7)	6.3(4)
O(7)	$0.1790(6)$	-0.0557(9)	$0.3002(5)$	2.9(2)
$\mathrm{N}(1)$	$0.1826(10)$	-0.187(1)	$0.1726(8)$	4.3(4)
C(1)	$0.283(1)$	$0.275(2)$	$0.143(1)$	$5.5(6)$
C(2)	$0.373(1)$	$0.087(2)$	$0.243(1)$	$5.8(6)$
C(3)	$0.301(1)$	$0.047(2)$	$0.093(1)$	$4.8(5)$
C(4)	$0.074(1)$	$0.277(2)$	$0.127(1)$	5.5(5)
C(5)	$0.003(1)$	$0.080(2)$	$0.1857(10)$	3.5(3)
C(6)	$0.100(1)$	$0.054(2)$	0.0589(9)	3.8(4)
C(7)	$0.103(2)$	-0.258(2)	$0.159(1)$	$9.6(9)$
C(8)	$0.061(1)$	-0.303(2)	$0.219(2)$	$7.9(8)$
C(9)	$0.069(2)$	-0.283(3)	$0.080(1)$	8.6(8)
C(10)	$0.264(2)$	-0.261(3)	$0.182(1)$	$11.3(9)$
C(11)	$0.295(1)$	-0.304(2)	$0.258(1)$	7.7(7)
C(12)	$0.306(1)$	-0.282(2)	$0.116(1)$	7.5(7)
C(13)	$0.1684(10)$	$0.061(1)$	0.3428(8)	$3.0(3)$
C(14)	$0.0762(10)$	0.059(2)	$0.3687(8)$	$3.0(3)$
C(15)	0.026 (1)	$0.167(2)$	$0.3739(10)$	4.4(5)
C(16)	-0.056(1)	$0.16002)$	$0.3966(10)$	$4.5(5)$
C(17)	$-0.092(1)$	$0.045(3)$	$0.412(1)$	5.7(6)
C(18)	-0.042(1)	$-0.059(2)$	0.4096(9)	4.6 (5)
$\mathrm{C}(19)$	0.040 (1)	-0.054(2)	0.3873(8)	3.4(4)
$\mathrm{C}(20)$	$0.2377(10)$	$0.070(2)$	$0.4112(8)$	3.1 (3)
C(21)	$0.2342(10)$	0.160(2)	0.4681 (9)	4.3(4)
C(22)	$0.298(1)$	$0.166(2)$	$0.532(1)$	5.7(5)
C(23)	0.365(1)	$0.083(2)$	0.537(1)	5.2(5)
C(24)	$0.371(1)$	$-0.008(2)$	$0.482(1)$	5.8(6)
C(25)	$0.308(1)$	-0.013(2)	0.4186 (9)	3.8(4)
H(1)	0.0509	0.2497	0.3599	5.4148
H(2)	-0.0892	0.2394	0.4018	5.4101
H(3)	-0.1521	0.0408	0.4240	6.7741
H(4)	-0.0666	-0.1393	0.4253	5.5957
H(5)	0.0751	-0.1316	0.3833	4.3800
H(6)	0.1853	0.2212	0.4640	5.3088
H(7)	0.2958	0.2294	0.5722	6.5105
H(8)	0.4092	0.0872	0.5815	5.9714
H(9)	0.4208	-0.0672	0.4850	6.9707
$\mathrm{H}(10)$	0.3119	-0.0770	0.3777	4.5656
H(11)	0.2310	-0.3417	0.1718	12.2970
H(12)	0.2477	-0.3176	0.2890	8.7246
H(13)	0.3281	-0.3792	0.2577	8.7246
H(14)	0.3313	-0.2387	0.2834	8.7246
H(15)	0.3386	-0.3605	0.1192	8.5474
H(16)	0.2661	-0.2866	0.0693	8.5474
H(17)	0.3462	-0.2153	0.1098	4.5656
H(18)	0.0636	-0.1773	0.1578	11.0060
H(19)	0.0708	-0.2507	0.2648	8.9170
H(20)	-0.0012	-0.3125	0.2078	8.9170
H(21)	0.0843	-0.3852	0.2326	8.9170
H(22)	0.0072	-0.2949	0.0710	10.2437
H(23)	0.0853	-0.2203	0.0448	10.2437
H(24)	0.0952	-0.3626	0.0651	4.5656

$B_{e q}=\frac{8}{3} \pi^{2}\left(U_{11}\left(a a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(c c^{*}\right)^{2}+2 U_{12} a a^{*} b b^{*} \cos \gamma+\right.$ $\left.2 U_{13} a a^{*} c c^{*} \cos \beta+i U_{23} b b^{*} c c^{*} \cos \alpha\right)$.
elemental sulfur in boiling toluene resulted in extrusion of the phosphorus-bridging carbonyl group followed by sulfur insertion to give ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$ (IV in Fig. 1) in relatively good yield (89% isolated product). However, a corresponding reaction of (${ }^{i} \mathrm{Pr}_{2_{2}}$ $\mathrm{NP})_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with gray selenium failed to give a corresponding product, apparently because of the much lower reactivity of polymeric gray selenium relative to the oligomeric cyclooctasulfur, S_{8}.

The chalcogens sulfur and selenium could be introduced pairwise as $\mathrm{E}_{2}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ units into the (${ }^{i} \mathrm{Pr}_{2} \mathrm{~N}$ $\mathrm{P}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit by reactions of commercially available $\mathrm{E}_{2} \mathrm{Cl}_{2}\left(\mathrm{E}=\mathrm{S} \text {, } \mathrm{Se} \text {) derivatives with (}{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CO}$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$. The ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6} / \mathrm{S}_{2} \mathrm{Cl}_{2}$ reaction gave a 12% yield of $\left({ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})$ ($\mathrm{V}: \mathrm{E}=\mathrm{S}$ in Fig. 1) in boiling hexane but led to decomposition to give ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$ in boiling toluene. The corresponding reaction of (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with $\mathrm{Se}_{2} \mathrm{Cl}_{2}$ was performed in boiling toluene but gave only a 5% yield of the insertion product ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Se}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{~V}: \mathrm{E}=$ Se in Fig. 1). Reaction of ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$, with SCl_{2} gave a complicated mixture of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2}\right)_{2} \mathrm{SFe}_{2}-$ $(\mathrm{CO})_{6},\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{~S}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$, and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{S}) \mathrm{Cl}_{2}$.

An attempt was made to prepare a dichlorocarbene insertion product such as ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{CCl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ by reaction of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ in boiling carbon tetrachloride. However, the resulting product had the stoichiometry ($\left.{ }^{2} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and more significantly exhibited two coupled doublets rather than a singlet in the ${ }^{31} \mathrm{P}$ NMR spectrum (Table 1) excluding formulation as (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{CCl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. Suitable X-ray quality crystals of this product have not yet been obtained.
3.2. The reaction of (${ }^{(} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{\text {o }}$ with PhBCl_{2}

The reaction of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with PhBCl_{2} was originally investigated in an attempt to effect insertion of PhB into the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit to give $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)\left(\mathrm{PhB}^{2}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ analogous to ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{PhP})$ $\mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (III: $\mathrm{R}=\mathrm{Ph}$ in Fig. 1) discussed above. However, the (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6} / \mathrm{PhBCl}_{2}$ reaction followed a different course than the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}-$ $(\mathrm{CO})_{6} / \mathrm{PhPCl}_{2}$ reaction in accord with the Lewis acidity of trivalent boron contrasted with the Lewis basicity of trivalent phosphorus. The yellow crystalline product from the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6} / \mathrm{PhBCl}_{2}$ reaction contained no boron and was shown by X-ray diffraction to be $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathbf{V I})$ analogous to $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{VII}: \quad \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}\right)$ from ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ and benzophenone [2]. The spectroscopic properties of VI and VII ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Ph}$) are very similar, particularly the $A X$ patterns in the ${ }^{31} P$ NMR and the positions and relative intensities of the five terminal $\nu(\mathrm{CO})$ frequencies in the infrared spectrum. The dimensions of the central $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{OC}$ units in

Table 8
comparison of the geometries of the $\mathrm{Fe}_{2} \mathrm{P}_{2} \mathrm{OC}$ units in $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCHPh}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{VII}: \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right)$ and $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ (VI)

	$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCHPh}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$	$\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}$
$\mathrm{Fe}-\mathrm{Fe}$	$2.589(4), 2.609(6)$	$2.616(3)$
$\mathrm{Fe}-\mathrm{P}$	$2.190(6), 2.231(7), 2.198(8), 2.229(5), 2.199(7), 2.244(1), 2.194(5), 2.243(7)$	$2.193(5), 2.190(5), 2.176(4), 2.201(5)$
$\mathrm{P} \cdots \mathrm{P}$	$2.614(8), 2.628(6)$	$2.542(6)$
$\mathrm{P}-\mathrm{C}$	$1.93(3), 1.90(2)$	$1.91(1)$
$\mathrm{P}-\mathrm{O}$	$1.62(2), 1.64(1)$	$1.68(1)$
$\mathrm{P}-\mathrm{Fe}-\mathrm{P}$	$72.5(2), 72.4(2), 72.5(2), 72.6(2)$	$70.9(2), 71.0(2)$
$\mathrm{Fe}-\mathrm{P}-\mathrm{Fe}$	$73.3(2), 70.8(2), 72.8(2), 71.1(2)$	$73.5(2), 73.1(2)$
$\mathrm{Fe}-\mathrm{P}-\mathrm{C}$	$102.3(8), 90.3(7), 110.6(6), 84.0(4)$	$112.2(5), 108.2(4)$
$\mathrm{Fe}-\mathrm{P}-\mathrm{O}$	$111.9(4), 111.4(7), 110.4(6), 110.5(4)$	$110.4(6), 110.5(4)$
$\mathrm{P}-\mathrm{C}-\mathrm{O}$	$103(1), 103(1)$	$99.7(9)$
$\mathrm{P}-\mathrm{O}-\mathrm{C}$	$115(1), 115.2(12)$	$115.9(8)$

the benzaldehyde adduct [2] [($\left.\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{OCHPh}\right] \mathrm{Fe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ (VII: $\left.\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right)$ and $\left[\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{CIP}) \mathrm{OC}-\right.$ $\left.\mathrm{Ph}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathbf{V I})$ are very similar (Table 8).

4. Discussion

The reactions of $\left({ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}(\mathrm{I}$ in Fig. 1) with $\mathrm{RPCl}_{2}\left(\mathrm{R}={ }^{t} \mathrm{Bu}, \mathrm{Ph}\right), \mathrm{PX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ and $\mathrm{E}_{2} \mathrm{Cl}_{2}$ $(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ most likely consume some of the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2^{-}}$ $\mathrm{COFe}_{2}(\mathrm{CO})_{6}$ as a dehalogenating agent and thus proceed in only low to modest yields (5 to 54%) based on $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$. However, halogenation products of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ are not consistently detected in the ${ }^{31} \mathrm{P}$ NMR spectra of the reaction mixtures. Nevertheless, resonances assignable to ${ }^{i} \mathrm{Pr}_{2} \mathrm{NPX}_{2}$ degradation products are found in some reaction mixtures. Our experimental results do not exclude the possibility that the phosphorus-bridging CO group acts as a dehalogenating agent upon extrusion being converted to the corresponding carbonyl halide $\mathrm{O}=$ $\mathrm{CX}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$.

The dehalogenating ability of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ (I) is also indicated by its reaction with carbon tetrachloride to give the chlorinated product ($\left.{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{P}_{2^{-}}$ $\mathrm{Cl}_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$. However, this product has not been found in the ${ }^{31} \mathrm{P}$ NMR spectra of any of the mixtures obtained from reactions of $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}\right.$ with other chlorides such as ${ }^{t} \mathrm{BuPCl}_{2}, \mathrm{PhPCl}_{2}, \mathrm{PCl}_{3}, \mathrm{SCl}_{2}$, $\mathrm{S}_{2} \mathrm{Cl}_{2}$, or $\mathrm{Se}_{2} \mathrm{Cl}_{2}$.

The reaction of (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}(\mathrm{I})$ with elemental sulfur proceeds in essentially quantitative yield after allowing for losses in product isolation. This reaction necessarily involves no dehalogenation and thus can proceed according to the following equation

$$
\begin{align*}
& 8\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}+\mathrm{S}_{8} \\
& \xrightarrow{\longrightarrow}\left(^{i}{ }^{(} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}+8 \mathrm{CO} \tag{2}
\end{align*}
$$

This reaction can incorporate all of the $\mathrm{Fe}_{2} \mathrm{P}_{2}$ units from the starting material into the product thereby
leading to efficient conversion of ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}{ }^{-}$ $(\mathrm{CO})_{6}$ to $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{SFe}_{2}(\mathrm{CO})_{6}$.

The most unusual reaction found in this work is the $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6} / \mathrm{PhBCl}_{2}$ reaction to give $\left[{ }^{i}{ }^{(} \mathrm{Pr}_{2}-\right.$ $\left.\mathrm{NP})(\mathrm{CIP}) \mathrm{OCPh}_{2}\right] \mathrm{Fe}_{2}(\mathrm{CO})_{6}(\mathrm{VI})$, which is formally derived by addition of benzophenone to the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{Cl}-$ $\mathrm{P}^{2} \mathrm{Fe}_{2}(\mathrm{CO})_{6}$ unit derived by CO extrusion from the hypothetical phosphorus-bridging carbonyl derivative $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)(\mathrm{ClP}) \mathrm{COFe}_{2}(\mathrm{CO})_{6}$. In the ($\left.{ }^{i} \mathrm{Pr}_{2} \mathrm{NP}\right)_{2} \mathrm{COFe}_{2}-$ $(\mathrm{CO})_{6} / \mathrm{PhBCl}_{2}$ reaction the PhBCl_{2} reagent serves two functions:
(1) double arylation of the phosphorus-bridging carbonyl group similar to the alkylation and arylation of free carbon monoxide with trialkyl- and triarylboranes, $\mathrm{R}_{3} \mathrm{~B}$, to give the corresponding $\left(-\mathrm{R}_{2} \mathrm{C}-\mathrm{O}-\mathrm{BR}-\right)_{3}$ heterocyclic derivatives [15,16];
(2) cleavage of a $\mathrm{P}-\mathrm{N}$ bond to give a $\mathrm{P}-\mathrm{Cl}$ bond similar to the reaction of (${ }^{i} \mathrm{Pr}_{2} \mathrm{NP}_{2} \mathrm{COFe}_{2}(\mathrm{CO})_{6}$ with HBr to give $\left({ }^{i} \mathrm{Pr}_{2} \mathrm{NPBr}\right)(\mathrm{HBr}) \mathrm{Fe}_{2}(\mathrm{CO})_{6}[3]$.

References

[1] (a) For part 11 of this series see Y.W. Li, M.G. Newton, and R.B. King, Inorg. Chem., 32 (1993) 5720; (b) portions of the present paper were presented at the XVth International Conference on Organometallic Chemistry, Warsaw, Poland, August, 1992, abstracts p. 83.
[2] R.B. King, N.K. Bhattacharyya and E.M. Holt, J. Organomet. Chem., 421 (1991) 247.
[3] R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 110 (1988) 2775.
[4] M. Fild, O. Stelzer and R. Schmutzler, Inorg. Synth., 1 (1973) 4.
[5] R.B. King and N.D. Sadanani, Synth. React. Inorg. Met.-Org. Chem., 15 (1985) 149.
[6] R.B. King, F.-J. Wu and E.M. Holt, Inorg. Chem., 27 (1988) 1241.
[7] R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 109 (1987) 7764.
[8] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Cryst, 22 (1989) 389.
[9] dirdif 92: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits and C.

Smykalla, The dirdif Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
[10] D.T. Cromer and J.T. Waber, International Tables for X-ray Crystallography, Vol. IV. Kynoch, Birmingham, 1974, Table 2.2 A.
[11] J.A. Ibers and W.C. Hamilton, Acta. Cryst., 17 (1964) 781.
[12] D.C. Creagh and W.J. McAuley, in A.J.C. Wilson (ed.), International Tables for Crystallography, Vol. C., Kluwer, Boston, 1992. Table 4.2.6.8., pp. 216-292.
[13] D.C. Creagh and J.H. Hubbell, in A.J.C. Wilson (ed), International Tables for Crystallography, Vol. C., Kluwer, Boston, 1992. Table 4.2.4.3., pp. 200-206.
[14] teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 and 1992.
[15] M.E.D. Hillman, J. Am. Chem. Soc., 84 (1962) 4715.
[16] H.C. Brown, Acc. Chem. Res., 2 (1969) 65.

[^0]: *This paper is dedicated to Prof. Fausto Calderazzo in recognition of his many contributions to inorganic and organometallic chemistry.

 * Corresponding author.

[^1]: ${ }^{\text {a }}$ These IR $\nu(\mathrm{CO})$ frequencies were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. $\mathrm{Me}=$ methyl; ${ }^{i} \mathrm{Pr}=$ isopropyl, ${ }^{t} \mathrm{Bu}=$ tert-butyl, $\mathrm{Ph}=\mathrm{phenyl}$.
 ${ }^{b}$ The ${ }^{31} \mathrm{P}$ NMR spectra were taken in CDCl_{3} solution: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet.
 ${ }^{c}$ Data from Y.W. Li, M.G. Newton, N.K. Bhattacharyya and R.B. King, Inorg. Chem., 31 (1992) 2069.
 ${ }^{d}$ Data from R.B. King, F.-J. Wu and E.M. Holt, J. Am. Chem. Soc., 109 (1987) 7764.
 ${ }^{\mathrm{e}}$ Data from R.B. King, N.K. Bhattacharyya and E.M. Holt, J. Organomet. Chem., 421 (1991) 247.

[^2]: ${ }^{a}$ The proton NMR spectra were obtained in CDCl_{3} solutions using tetramethylsilane as an internal standard; $d=$ doublet, dd $=$ double doublet, $t=$ triplet, $s p=$ septet. Coupling constants are given in parentheses.

